Help with Quicktime Movies
Check Java/Javascript preferences
Session 1: How can we create an integrated circuit from
sand?
Introduction
Exploration 1A: What are your initial ideas?
Exploration 1B: What are integrated circuits?
Exploration 1C: How are integrated circuits built?
Session 2: Why doesn't elemental Si exist in nature?
Energy Transfer
Exploration 2A: What are your initial ideas?
Exploration 2B: How is energy transferred?
Exploration 2C: What is meant by energy content?
Exploration 2D: What evidence do we have for conservation of energy?
Session 3: How can silicon be extracted from sand?
Enthalpy
Exploration 3A: What are your initial ideas?
Exploration 3B: How much heat do you need to supply to extract Si?
Exploration 3C: How much heat is needed to decompose Si02 relative
to other oxides?
Session 4: How can we reduce the heat required to extract
Si?
Calorimetry and Hess's Law
Exploration 4A: What are your initial ideas?
Exploration 4B: How is the enthalpy change of a reaction related to temperature
change?
Exploration 4C: How much heat is needed to raise the temperature of a substance?
Exploration 4D: How do we measure the enthalpy change of a reaction?
Session 5: How can you remove a contaminant from the Si
surface?
Entropy and Disorder
Exploration 5A: What are your initial ideas?
Eating Pizza
Breaking a Bottle
Bouncing Balls
Burning Paper
Foam Cup and Acetone
Precipitation of Lead Iodide
Self Assessment
Exploration 5B: In what directions do chemical reactions become more disordered?
Exploration 5C: How do we calculate entropy changes?
Exploration 5D: Why do systems tend toward disorder?
Session 6: How do you form SiO2 layers on Si?
Gibbs Free Energy and Spontaneity
Exploration 6A: What are your initial ideas?
Exploration 6B: Under what conditions will the formation of SiO2
be spontaneous?
Exploration 6C: What is the relationship between temperature and spontaneity?
Exploration 6D: How quickly will a spontaneous reaction occur?
Session 7: How do you control the thickness of the insulating
SiO2 layer?
Extent of Reaction
Exploration 7A: What are your initial ideas?
Exploration 7B: Why don't reactions go to completion?
Exploration 7C: How do non-standard conditions affect the extent of reaction?
Session 8: How can we react selectively with portions
of a Si wafer?
Bond Enthalpy
Exploration 8A: What are your initial ideas?
Exploration 8B: How much energy is involved in the making and breaking of
chemical bonds?
Exploration 8C: How can bond enthalpies be used to calculate DHrxno?
Session 9: How do we use thermodynamics in the production
of integrated circuits?
Production
Project 1: Finding a viable sequence of tasks
to produce an integrated circuit
Project 2: Finding a viable sequence of tasks to produce a complex pattern
on a metal substrate
Copyright © 2004 by the trustees of Beloit College and the Regents of the
University of California. This Module has been
developed under the direction of the ChemLinks Coalition, headed by Beloit College,
and the ModularChem Consortium, headed by the University of California at Berkeley.
This material is based upon work supported by the National Science Foundation
grants No. DUE-9455918 and DUE-9455924. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation, Beloit
College, or the Regents of the University of California.
Published through exclusive license with W.
W. Norton.
Computer Chip Thermochemistry: How Can We Create an Integrated Circuit from
Sand? ISBN 0-393-92433-5
Computer Chip Thermochemistry | ChemConnections