Linear Least Squares Method for n points (x_{i}, y_{i}) fitted to line $y=m x+b$

$$
\begin{aligned}
\text { slope }=m & =\frac{n \sum\left(x_{i} y_{i}\right)-\sum x_{i} \sum y_{i}}{D} \\
y \text {-intercept }=b & =\frac{\sum\left(x_{i}{ }^{2}\right) \sum y_{i}-\sum\left(x_{i} y_{i}\right) \sum x_{i}}{D} \\
\text { where } D & =n \sum\left(x_{i}{ }^{2}\right)-\left(\sum x_{i}\right)^{2}
\end{aligned}
$$

Assuming errors in y are larger than errors in x (known amounts of standards), the uncertainty in the y values is

$$
s y=\sqrt{\frac{\sum\left(y_{i}-m x_{i}-b\right)^{2}}{n-2}}
$$

Least squares minimizes the numerator: (vertical deviations of y from the line) ${ }^{2}$. Notice the $n-2$ degress of freedom, where n is the number of points.

The uncertainty in m and b come from the uncertainty in y.

$$
\begin{aligned}
\text { standard deviation of slope } & =s_{m}
\end{aligned}=s y \sqrt{\frac{n}{D}}, ~\left(s t a n d a r d ~ d e v i a t i o n ~ o f ~ i n t e r c e p t ~=~ s b ~=~ s y ~ \sqrt[~]{\frac{\sum\left(x_{i} 2\right)}{D}}\right.
$$

If use a calibration curve to find x from known y, then standard deviation for x is

$$
s_{x}=\frac{s_{y}}{|m|} \sqrt{\frac{1}{k}+\frac{n \bar{x}^{2}+\sum\left(x_{i}^{2}\right)-2 \bar{x} \sum x_{i}}{D}}
$$

where \bar{x} is the average value calculated from $y=m x+b, k$ is the number of measurements averaged, and n is the number of points in the calibration curve. The confidence intervals will be

$$
m \pm t s_{m} \quad b \pm t s_{b} \quad x \pm t s_{x}
$$

where the t-value depends on the confidence level and $\boldsymbol{n}-\mathbf{2}$ degrees of freedom.

Standard Addition Method Extrapolation

$$
x_{\text {extrapolated }}=\frac{b}{m} \quad s_{x_{\text {extrapolated }}}=\frac{s_{y}}{|m|} \sqrt{\frac{1}{n}+\frac{\bar{y}^{2}}{m^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}}
$$

where \bar{x} and \bar{y} are the averages of the x and y-values and n is the number of points in the standard addition curve (including the point with no standard added). The confidence intervals will be

$$
x \pm t s_{x_{\text {extrapolated }}}
$$

where the t-value depends on the confidence level and $\boldsymbol{n} \mathbf{- 2}$ degrees of freedom.

