Dimensional analysis is the technique of treating units as numbers for the purpose of solving problems. For mathematical purposes 1 ft means $1 \times \mathrm{ft}$. (Numbers are multiplied by their units.) Write a ratio with one unit on bottom and another unit on the top. Insert numbers to make the top and bottom equal to use as a conversion factor.

- Words that mean divided: per, in a, is a, are a, goes with, equals, equivalent
- Recognize that there is a difference between $\$ / \mathrm{lb}$ and $\mathrm{lb} / \$$.
- Metric prefixes can be treated as independent units: $\frac{\text { milli }}{0.001} \frac{\text { kilo }}{1000} \frac{\text { centi }}{0.01}$
- Converting $6 \mathrm{~m}^{2}$ to square ft requires using a conversion twice.
$2 \times 2=2^{2}$
$\sec \times \sec =\sec ^{2}$
$3^{2} \times 3^{2}=3^{4}$
$\mathrm{m}^{2} \times \mathrm{m}=\mathrm{m}^{3}$
- Always identify amount of what or moles of what. Having 2 mL or 4 grams or 3 mole is less meaningful than having $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ or 4 grams He or 3 mole C.

Most numerical chemistry problems involve

1. converting from amounts to moles

Grams of solid converted to moles using formula mass: FM g/mole.
Liters of liquid converted to grams using density in g / mL, then grams converted to moles using formula mass. The density of liquid water from 0 to $30^{\circ} \mathrm{C}$ is $1.00 \mathrm{~g} / \mathrm{mL}$.
Liters of solution converted to moles using molarity. Grams of solution converted to grams dissolved using \%, then grams converted to moles using formula mass. Molarity $=\frac{\text { moles dissolved }}{\text { liters of solution }}=\mathrm{M} \quad \%=\frac{\mathrm{g} \text { dissolved }}{100 \mathrm{~g} \text { solution }} \quad \mathrm{ppm}=\frac{\mathrm{mg} \text { analyte }}{\mathrm{kg} \text { sample }}$ or $\frac{\mathrm{mg} \text { analyte }}{\mathrm{L} \text { solution }}$
The number of moles or grams dissolved does not change upon dilution.
Liters of gas converted to moles using $\frac{P V}{n T}=\frac{.082058 \mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}$.
2. using stoichiometry information from formulas or balanced reactions
CO_{2} means $\frac{2 \text { atoms } \mathrm{O}}{1 \text { atom } \mathrm{C}}$ or $\frac{2 \text { atoms } \mathrm{O}}{\text { molecule } \mathrm{CO}_{2}}$ or $\frac{1 \text { atom } \mathrm{C}}{2 \text { atoms } \mathrm{O}}$, etc.
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ means $\frac{2 \text { molecules } \mathrm{H}_{2}}{1 \text { molecule } \mathrm{O}_{2}}$ or $\frac{2 \text { molecules } \mathrm{H}_{2} \mathrm{O}}{1 \text { molecule } \mathrm{O}_{2}}$, etc.
3. converting from moles to amounts

Example: How many g Ag in $3.72 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CO}_{3}$?
$3.72 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CO}_{3} \frac{\mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CO}_{3}}{275.8 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CO}_{3}} \frac{2 \mathrm{~mol} \mathrm{Ag}}{\mathrm{mol} \mathrm{Ag}_{2} \mathrm{CO}_{3}} \frac{107.9 \mathrm{~g} \mathrm{Ag}}{\mathrm{mol} \mathrm{Ag}}=2.91 \mathrm{~g} \mathrm{Ag}$
Example: 10.02 mL HCl is titrated with $0.1123 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L}$. The indicator changes color after addition of 42.34 mL NaOH . What is the $\mathrm{mol} \mathrm{HCl} / \mathrm{L}$?
a. Convert amount delivered from buret to moles
b. Use stoichiometry of reaction: $1 \mathrm{HCl}+1 \mathrm{NaOH} \rightarrow 1 \mathrm{NaCl}+1 \mathrm{H}_{2} \mathrm{O}$
c. Moles/L wanted so take moles and divide by original liters.

$$
\frac{42.34 \mathrm{~mL} \mathrm{NaOH} \frac{0.1123 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{~L} \mathrm{NaOH}} \frac{1 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{NaOH}}}{10.02 \mathrm{~mL} \mathrm{HCl}}=0.4745 \mathrm{~mol} \mathrm{HCl} / \mathrm{L}
$$

Symbols for molarity $=\mathbf{m o l} / \mathrm{L}$

In analytical chemistry we need to make a distinction between how a solution is prepared and the species that are actually in the solution. We will use M for the "analytical concentration" (the total amount, or the recipe), and [] for the actual solution species concentration. Both are read as $\mathrm{mol} / \mathrm{L}$.

For example, in 1.0 M NaCl , the $[\mathrm{NaCl}]=0.0,\left[\mathrm{Na}^{+}\right]=1.0$, and $\left[\mathrm{Cl}^{-}\right]=1.0$, and in $1.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4},\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=0.000,\left[\mathrm{HSO}_{4}^{-}\right]=0.988,\left[\mathrm{SO}_{4}^{-2}\right]=0.012$, and $\left[\mathrm{H}^{+}\right]=1.012$

